JP EN
(2)現代の製造業にメタマテリアルが必要な理由

(2)現代の製造業にメタマテリアルが必要な理由

(2)Why Today's Manufacturing Industry Needs Metamaterials

Nature Architectsの技術ブログでは弊社に関連する技術領域を中心として、あゆるものづくり業界に役立つ情報をシェアすることを目的にしています。 初回は3回連続で代表の大嶋がメタマテリアルにまつわる3つの重要なトピックを紹介します。

Nature Architects' technical blog aims to share useful information for the manufacturing industry, focusing on technical areas related to our company. In this first installment of a three-part series, our representative, Mr. Oshima, will introduce three important topics related to metamaterials.

Nature Architects

Nature Architects

2022,08,10 2022,08,10

この記事の概要

この記事では今の製造業にすぐにでも適応可能な次の3つの実用的なメタマテリアルの設計事例を紹介します。

① 振動制御によるハプティックデバイスの筐体設計

② 可動部品の組み立て削減設計

③ 材料代替設計

メタマテリアル研究と製造業におけるメタマテリアルの違い

メタマテリアル(metamaterial)とグーグル検索すると、複雑怪奇なカタチによって生み出される様々な物理的機能に関する論文がヒットします。これらの発見/発明の背景には3Dプリンタをはじめとした3Dデータを瞬時に物質化する工作機械が各大学や研究機関のラボに普及し研究者がクイックに設計/解析、試作/実験を行う環境が整備されたことが大きく影響しています。しかし、このようなアカデミックなメタマテリアルを産業応用する場合には当然3Dプリンタが必要となるため、殆どの場合で量産ができません(製造コストが高すぎるため)。一方、先ほど紹介した穴をあけるだけのメタマテリアルは特殊な製造設備は必要なく、従来の製造方法で量産が可能です。実はメタマテリアルには特殊な製造設備なしで量産可能なものも数多く存在するのです。しかし、シンプルな構造でもほとんどの場合は繊細な設計された構造を膨大に設計検討しなければ所望の機能を得ることができません。

Nature Architectsでは従来の製造設備で量産が見込まれるメタマテリアルを製造制約、コスト、生み出す機能の全ての制約と目的を効果的に膨大な数の設計を検討し提案します。(たまに3Dプリンタを活用した先進的な設計も行います)

我々のメタマテリアル設計は振動遮断、振動伝達、音響遮断、変形制御による動く部品の組み立て削減、をはじめとしたさまざまな物理現象を扱っています。次に具体的に3つの設計事例を紹介します。

① 振動制御によるハプティックデバイスの筐体設計

従来の振動子を筐体に固定した設計では振動が筐体全体に伝わり、効率よく振動をユーザーに届けることができませんでした。弊社の設計によって筐体に振動増幅構造を組み込み、特定の部位のみを振動させることによって振動を増幅してユーザーに届けることが可能になります。そのため、

  • アクチュエータの消費電力を半分以下に抑える*
  • 振動による体感の向上
  • 電池の小型化、アクチュエータを低コスト化

などが見込めます。こうした付加価値を特殊な製造や部品組み立てを用いることなく、筐体設計を変更し従来の製造設備を変更することなく実現することができます。

② 可動部品の組み立て削減

従来製品では10パーツ以上の組み立てを必要とするジョイスティッを射出成形を前提としても3〜4パーツに組み立てを大幅に削減し、耐久性向上、精度向上、製造コスト効率の向上を狙った設計を提案しました。

③ 材料代替設計

従来はゴムやエラストマーを必要としていた柔軟性をプラスチックで代替する設計を行います。具体的にはオフィスチェアなどのクッション部分を樹脂一体のハニカムで構築し体圧を効率よく分散する柔軟性を実現しました。材料を適切に代替することで、低コスト化、成形性向上による意匠性の向上、リサイクル性の向上、軽量化などの付加価値を生み出すことが可能です。

image.png (51.9 kB)

Writer

Nature Architects Nature Architects

Nature Architects

Related Topics

Up Next

ピクセルを滑らかなカタチに。~marching squares法~

ピクセルを滑らかなカタチに。~marching squares法~

Making pixels smoother. ~Marching Squares method~

今回のテーマは「marching squares法を用いたピクセル画像の境界処理」です。 格子上で取得されたスカラー場の情報から、人の目から見て滑らかで自然な境界線、境界面をどのように作成するか。 そのアルゴリズムを理解しながらGrasshopperで実装し、様々な形状への適用をもって評価します。

The theme of this article is "Boundary processing of pixel images using the marching squares method." How can we create boundaries and interfaces that look smooth and natural to the human eye from the scalar field information obtained on a lattice? We will understand the algorithm and implement it in Grasshopper, then evaluate its application to various shapes.

山本雄大

Yuta Yamamoto

2025,03,26 2025,03,26
獺と鮪で行う木造住宅の耐震設計

獺と鮪で行う木造住宅の耐震設計

Seismic Design of Japanese Wooden Houses by Otter and Tunny

日本における住宅の多くは木造であり,その設計には耐震性や耐風性を考慮した構造計算が不可欠です。 特に低層木造住宅では,建築基準法に基づいた壁量計算や偏心の検討が重要な要素となります。 本記事では木造住宅の構造設計における基本的な考え方を整理するとともに,Grasshopperを活用した低層木造住宅構造設計の最適化について紹介します。構造設計に携わる方や設計手法の効率化に関心のある方にとって有益な内容となるはずです。

Most houses in Japan are constructed of wood, and structural calculations that take into account earthquake and wind resistance are essential for their design. Especially for low-rise wooden houses, wall volume calculations and eccentricity considerations based on the Building Standard Law are important factors. This article summarizes the basic concepts in structural design of wooden houses and introduces the optimization of structural design of low-rise wooden houses using Grasshopper. It should be of interest to those involved in structural design and those interested in improving the efficiency of design methods.

鈴木一希

Kazuki Suzuki

2025,03,07 2025,03,07