JP EN
(2)現代の製造業にメタマテリアルが必要な理由

(2)現代の製造業にメタマテリアルが必要な理由

(2)Why Today's Manufacturing Industry Needs Metamaterials

Nature Architectsの技術ブログでは弊社に関連する技術領域を中心として、あゆるものづくり業界に役立つ情報をシェアすることを目的にしています。 初回は3回連続で代表の大嶋がメタマテリアルにまつわる3つの重要なトピックを紹介します。

Nature Architects' technical blog aims to share useful information for the manufacturing industry, focusing on technical areas related to our company. In this first installment of a three-part series, our representative, Mr. Oshima, will introduce three important topics related to metamaterials.

大嶋泰介

Taisuke Ohshima

2022,08,10 2022,08,10

この記事の概要

この記事では今の製造業にすぐにでも適応可能な次の3つの実用的なメタマテリアルの設計事例を紹介します。

① 振動制御によるハプティックデバイスの筐体設計

② 可動部品の組み立て削減設計

③ 材料代替設計

メタマテリアル研究と製造業におけるメタマテリアルの違い

メタマテリアル(metamaterial)とグーグル検索すると、複雑怪奇なカタチによって生み出される様々な物理的機能に関する論文がヒットします。これらの発見/発明の背景には3Dプリンタをはじめとした3Dデータを瞬時に物質化する工作機械が各大学や研究機関のラボに普及し研究者がクイックに設計/解析、試作/実験を行う環境が整備されたことが大きく影響しています。しかし、このようなアカデミックなメタマテリアルを産業応用する場合には当然3Dプリンタが必要となるため、殆どの場合で量産ができません(製造コストが高すぎるため)。一方、先ほど紹介した穴をあけるだけのメタマテリアルは特殊な製造設備は必要なく、従来の製造方法で量産が可能です。実はメタマテリアルには特殊な製造設備なしで量産可能なものも数多く存在するのです。しかし、シンプルな構造でもほとんどの場合は繊細な設計された構造を膨大に設計検討しなければ所望の機能を得ることができません。

Nature Architectsでは従来の製造設備で量産が見込まれるメタマテリアルを製造制約、コスト、生み出す機能の全ての制約と目的を効果的に膨大な数の設計を検討し提案します。(たまに3Dプリンタを活用した先進的な設計も行います)

我々のメタマテリアル設計は振動遮断、振動伝達、音響遮断、変形制御による動く部品の組み立て削減、をはじめとしたさまざまな物理現象を扱っています。次に具体的に3つの設計事例を紹介します。

① 振動制御によるハプティックデバイスの筐体設計

従来の振動子を筐体に固定した設計では振動が筐体全体に伝わり、効率よく振動をユーザーに届けることができませんでした。弊社の設計によって筐体に振動増幅構造を組み込み、特定の部位のみを振動させることによって振動を増幅してユーザーに届けることが可能になります。そのため、

  • アクチュエータの消費電力を半分以下に抑える*
  • 振動による体感の向上
  • 電池の小型化、アクチュエータを低コスト化

などが見込めます。こうした付加価値を特殊な製造や部品組み立てを用いることなく、筐体設計を変更し従来の製造設備を変更することなく実現することができます。

② 可動部品の組み立て削減

従来製品では10パーツ以上の組み立てを必要とするジョイスティッを射出成形を前提としても3〜4パーツに組み立てを大幅に削減し、耐久性向上、精度向上、製造コスト効率の向上を狙った設計を提案しました。

③ 材料代替設計

従来はゴムやエラストマーを必要としていた柔軟性をプラスチックで代替する設計を行います。具体的にはオフィスチェアなどのクッション部分を樹脂一体のハニカムで構築し体圧を効率よく分散する柔軟性を実現しました。材料を適切に代替することで、低コスト化、成形性向上による意匠性の向上、リサイクル性の向上、軽量化などの付加価値を生み出すことが可能です。

image.png (51.9 kB)

Summary of this article

This article presents the following three practical metamaterial design examples that can be applied to today's manufacturing industry.

(1) Haptic device housing design with vibration control

(2) Design for reduced assembly of moving parts

(3) Material substitution design

Differences between metamaterials research and metamaterials in manufacturing

A Google search for the word "metamaterial" shows a number of papers on the various physical functions produced by complex geometries. The background of these discoveries/inventions is largely due to the spread of 3D printers and other machine tools that instantly materialize 3D data in laboratories of universities and research institutes, creating an environment where researchers can quickly design/analyze and prototype/experiment. However, when such academic metamaterials are used in industrial applications, 3D printers are naturally required, and in most cases, mass production is not possible (because the manufacturing cost is too high). On the other hand, the metamaterials introduced above, which require only holes, do not require special manufacturing equipment and can be mass-produced using conventional manufacturing methods. In fact, there are many metamaterials that can be mass-produced without special manufacturing equipment. However, in most cases, even simple structures cannot achieve the desired functionality without extensive design studies of delicately designed structures.

Nature Architects can propose metamaterials that can be mass-produced using conventional manufacturing facilities, and effectively design a vast number of metamaterials to meet all the constraints and objectives of manufacturing, cost, and the functionality they will produce. (Occasionally, we also offer advanced designs utilizing 3D printers.)

Our metamaterial designs address a variety of physical properties, including vibration isolation, vibration transmission, acoustic isolation, and reduction of assembly of moving parts through controlled deformation. The following are three specific design examples.

① Haptic device housing design with vibration control

Conventional designs with the transducer fixed to the enclosure transmit vibration throughout the entire enclosure, making it impossible to efficiently deliver vibration to the user. Our design incorporates a vibration amplification structure into the housing, which amplifies the vibration by vibrating only certain parts of the housing, allowing the vibration to be amplified and delivered to the user. Therefore, it is possible to

  • Reduce the power consumption of the actuator to less than half*.
  • Improvement of the user's experience due to vibration
  • Battery downsizing and actuator cost reduction

The following are expected to be added value to the system. Such added value can be realized without using special manufacturing or parts assembly, without changing the housing design, and without changing conventional manufacturing facilities.

2 Reduction in the assembly of moving parts

We proposed a design that aimed to improve durability, accuracy, and manufacturing cost efficiency by drastically reducing the assembly of joysticks, which require more than 10 parts in conventional products, to 3 to 4 parts even assuming injection molding.

3) Material substitution design

We developed that use plastics to replace flexibility that previously required rubber or elastomers. Specifically, the cushions of office chairs and other products are constructed with a honeycomb of plastic to achieve the flexibility that disperses body pressure efficiently. By appropriately substituting materials, it is possible to create added value such as lower cost, improved design through better design possibility, improved recyclability, and lighter weight.

Writer

代表取締役 / CEO

Chief Executive Officer

大嶋泰介Taisuke Ohshima Taisuke Ohshima

東京大学総合文化研究科広域科学専攻広域システム科学系博士課程単位取得退学。独立行政法人日本学術振興会特別研究員(DC1)、筑波大学非常勤研究員などを経て、2017年5月にNature Architectsを創業。メカニカル・メタマテリアル、コンピュテーショナルデザイン、デジタルファブリケーションの研究に従事する。独立行政法人情報処理推進機構より未踏スーパークリエータ、総務省より異能ベーションプログラム認定。

Ohshima received ABD in the Department of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo. After working as a Research Fellow (DC1) of the Japan Society for the Promotion of Science (JSPS) and a part-time researcher at the University of Tsukuba, he founded Nature Architects in May 2017. He is engaged in research on mechanical metamaterials, computational design, and digital fabrication, as well as the development of technologies for calculating the elasticity and deformation of materials and designing, fabricating, and controlling them freely through geometric structures. He has been certified as an MITOU Super Creator by the Information-technology Promotion Agency, Japan (IPSJ), and as an interdisciplinary researcher by the Ministry of Internal Affairs and Communications (MIC).

Taisuke Ohshima
  • Twitter

Nature Architects株式会社

Nature Architects, Inc.

代表取締役:大嶋 泰介

CEO:Taisuke Ohsima

所在地:東京都港区赤坂8-4-7 アパートメントカーム7C

ADDRESS:Apartment Calm 3D, 8-4-7, Akasaka, Tokyo, 107-0052, Japan

設立:2017年5月

Funded:May, 2017

URL:https://nature-architects.com/

お問い合わせ:info@nature-architects.com

CONTACT:info@nature-architects.com

Related Topics

Up Next

準0剛性を実現する構造 “QZS” を使った防振とその安定化

準0剛性を実現する構造 “QZS” を使った防振とその安定化

Vibration isolation and its stabilization using the "QZS" structure for quasi-zero stiffness

前回の記事で紹介した剛性と質量、防振のトレードオフを解決する技術として Quasi-Zero Stiffness 構造(準0剛性構造)が知られています。 Quasi-Zero Stiffness で検索すると複数の論文(例えば [1], [2], [3])がヒットしますので、その概要と NatureArchitects でのソリューションを紹介します。

Quasi-Zero Stiffness structure is known as a technology to solve the trade-off between stiffness, mass, and vibration isolation introduced in the previous article. A search for "Quasi-Zero Stiffness" will turn up several papers (e.g., [1], [2], [3]), so I will give an overview and introduce the solution in NatureArchitects.

夏目大彰

Hiroaki Natsume

2022,09,16 2022,09,16
剛性と質量、及びそれらから求まる防振のトレードオフについて

剛性と質量、及びそれらから求まる防振のトレードオフについて

The trade-off between vibration isolation by dynamic and static stiffness

弊社では、防振ソリューションとして DFM PULSE を展開しており、様々な部材への防振装置の設計ソリューションを提供しています。防振において、なぜ既存の部材ではなく、メタマテリアルを使ったアプローチが必要な場合があるのかについて基礎的な静力学と動力学の面から紹介します。

DFM PULSE, our vibration isolation solution, provides design solutions for vibration isolation devices for a wide range of components. The article will introduce the basic statics and dynamics of why a metamaterial approach to vibration isolation may be necessary instead of an existing component.

夏目大彰

Hiroaki Natsume

2022,09,16 2022,09,16